Primal convergence from dual subgradient methods for convex optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual subgradient methods for convex problems

In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem. Besides other advantages, this useful feature provides the methods with a reliable stopping criterion. T...

متن کامل

Ergodic, primal convergence in dual subgradient schemes for convex programming

Lagrangean dualization and subgradient optimization techniques are frequently used within the field of computational optimization for finding approximate solutions to large, structured optimization problems. The dual subgradient scheme does not automatically produce primal feasible solutions; there is an abundance of techniques for computing such solutions (via penalty functions, tangential app...

متن کامل

"Efficient" Subgradient Methods for General Convex Optimization

A subgradient method is presented for solving general convex optimization problems, the main requirement being that a strictly-feasible point is known. A feasible sequence of iterates is generated, which converges to within user-specified error of optimality. Feasibility is maintained with a linesearch at each iteration, avoiding the need for orthogonal projections onto the feasible region (an ...

متن کامل

Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems

Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? ...

متن کامل

Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods

In this paper, we study methods for generating approximate primal solutions as a by-product of subgradient methods applied to the Lagrangian dual of a primal convex (possibly nondifferentiable) constrained optimization problem. Our work is motivated by constrained primal problems with a favorable dual problem structure that leads to efficient implementation of dual subgradient methods, such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2014

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-014-0772-2